China Custom T Series High Speed Right Angle Small Bevel Gear Reducer supplier

Product Description

T Series High Speed Right Angle Small Bevel Gear Reducer

Product Description


Technical data:

1. Power: 0.37-200 (KW)
2. Output Speed: 11-226RMP,
3. Torque: 400-56000 (N. M)
4. Transmission stage: Three stage

Applications:
The products are widely applied in electricity, coal, cement, metallurgy, harbor, agriculture, shipping, lifting, environment protection, stage, logistic, weaving, paper making, light industry, plastics and other regions

1. We accept sample order.
2. We undertake the problems due to quality.
3. We supply detail answers about technical questions.
4. We are the manufacturer so we could supply the products as soon as possible.
5. At the instance of our dear customer, we can do the customized gear boxes for clients.

Detailed Photos

Commercial information:
1. MOQ: 1 set
2. Packing method: Polywood
3. Delivery lead time: 10-25 days
4. Price terms: FOB, CIF, EXW
5. Payment method: T/T, 30% in advance, 70% balance before delivery
6. Shipping port: HangZhou
7. OEM: We accept customized products as per your special requirement.
8. Xihu (West Lake) Dis.lines for the Selection: Usually we can select 1 machine which is suitable for you with some informations from you, such as ratio/motor speed/mounting dimension/ output torque etc.
9. If the minimum order amount is in excess of $10000, there are preferential

input power 0.018-96kw
ratio 1-3
permissable torque 11-607N.M
mounting type:  footmounted
usage: change direction

Product Parameters

Models Input Power Ratio Max. Torque Weight(kg) Output Shaft Dia.(k6)
T2 0.014KW~1.79KW 1~2 11 2 Φ15
T4 0.026KW~4.94KW 1~2 31 10 Φ19
T6 0.037KW~14.9KW 1~3 94 21 Φ25
T7 0.042KW~22KW 1~3 139 32 Φ32
T8 0.064KW~45.6KW 1~3 199 49 Φ40
T10 0.11KW~65.3KW 1~3 288 78 Φ45
T12 0.188KW~96KW 1~3 607 124 Φ50
T16 0.40KW~163KW 1~3 1073 188 Φ60
T20 0.69KW~234KW 1~3 1943 297 Φ72
T25 1.4KW~335KW 1~3 3677 488 Φ85

Ratio: 1:1, 1.5:1, 2:1, 2.5:1, 3:1

Packaging & Shipping

Company Profile

After Sales Service

Pre-sale services 1. Select equipment model.
2.Design and manufacture products according to clients’ special requirement.
3.Train technical personal for clients
Services during selling 1.Pre-check and accept products ahead of delivery.
2. Help clients to draft solving plans.
After-sale services 1.Assist clients to prepare for the first construction scheme.
2. Train the first-line operators.
3.Take initiative to eliminate the trouble rapidly.
4. Provide technical exchanging.

FAQ

FAQ:

1.Q:What kinds of gearbox can you produce for us?
A:Main products of our company: UDL series speed variator,RV series worm gear reducer, ATA series shaft mounted gearbox, X,B series gear reducer,
P series planetary gearbox and R, S, K, and F series helical-tooth reducer, more
than 1 hundred models and thousands of specifications
2.Q:Can you make as per custom drawing?
A: Yes, we offer customized service for customers.
3.Q:What is your terms of payment ?
A: 30% Advance payment by T/T after signing the contract.70% before delivery
4.Q:What is your MOQ?
A: 1 Set

Welcome to contact us for more detail information and inquiry.
If you have specific parameters and requirement for our gearbox, customization is available.

Application: Machinery, Industry
Function: Change Drive Direction, Speed Reduction
Layout: Right Angle
Hardness: Hardened
Installation: Vertical Type
Step: Single-Step
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

miter gear

What are the factors to consider when selecting miter gears for an application?

When selecting miter gears for an application, several factors need to be taken into consideration to ensure optimal performance and compatibility. Here are some key factors to consider:

1. Load Requirements:

Determine the magnitude and type of load that the miter gears will be subjected to. Consider factors such as torque, speed, and direction of rotation. This information helps in selecting miter gears with the appropriate load capacity and tooth strength to handle the application’s requirements.

2. Gear Ratio:

Identify the desired gear ratio, which is the ratio of the number of teeth between the input and output gears. The gear ratio determines the speed and torque relationship between the gears. Select miter gears with a gear ratio that meets the specific speed and torque requirements of the application.

3. Accuracy and Precision:

Determine the required level of accuracy and precision for the application. Certain applications, such as precision instruments or robotics, may require miter gears with high precision and low backlash to ensure accurate motion transmission.

4. Space Constraints:

Evaluate the available space for the miter gears within the system. Consider the gear dimensions, shaft orientations, and clearance requirements. Choose miter gears that can fit within the available space while still allowing for proper meshing and alignment.

5. Noise and Vibration:

Consider the acceptable levels of noise and vibration for the application. Spiral bevel gears, for example, are known to reduce noise and vibration compared to straight bevel gears. Select miter gears with suitable tooth profiles and designs to minimize noise and vibration if required.

6. Lubrication and Maintenance:

Assess the lubrication and maintenance requirements of the miter gears. Some miter gears may require specific lubrication methods or periodic maintenance. Consider the ease of access for lubrication and maintenance tasks when selecting miter gears.

7. Environmental Factors:

Take into account the environmental conditions in which the miter gears will operate. Factors such as temperature extremes, moisture, dust, chemicals, or exposure to corrosive substances can impact gear performance. Choose miter gears that are suitable for the specific environmental conditions of the application.

8. Cost and Availability:

Consider the cost and availability of the miter gears. Evaluate the overall value proposition, including the initial cost, long-term maintenance costs, and the availability of spare parts. Balance the cost factor with the desired performance and reliability.

By considering these factors, engineers and designers can select miter gears that are well-suited for the application’s requirements, ensuring efficient and reliable operation.

“`miter gear

How do you calculate the gear ratio in a miter gear assembly?

The gear ratio in a miter gear assembly can be calculated by considering the number of teeth on the gears involved. Here’s a step-by-step explanation:

1. Determine the Number of Teeth:

Identify the number of teeth on both the driving gear (input gear) and the driven gear (output gear) in the miter gear assembly. The number of teeth can usually be found in the gear specifications or by physically counting the teeth.

2. Calculate the Gear Ratio:

To calculate the gear ratio, divide the number of teeth on the driven gear (output gear) by the number of teeth on the driving gear (input gear). The formula for calculating the gear ratio is:

Gear Ratio = Number of Teeth on Driven Gear / Number of Teeth on Driving Gear

3. Simplify the Ratio (Optional):

If the resulting gear ratio is a fraction, it can be simplified to its simplest form. Divide both the numerator and the denominator by their greatest common divisor to simplify the ratio.

4. Interpret the Gear Ratio:

The gear ratio indicates the relationship between the rotational speed or angular velocity of the driving gear and the driven gear. It represents how many times the driven gear rotates for each rotation of the driving gear. For example, a gear ratio of 2:1 means that the driven gear rotates twice for every rotation of the driving gear.

5. Consider the Significance:

The gear ratio has practical implications in determining the mechanical advantage and speed reduction/amplification in a miter gear assembly. A gear ratio greater than 1 indicates a speed reduction and increased torque, while a gear ratio less than 1 indicates a speed amplification and decreased torque.

In summary, the gear ratio in a miter gear assembly is calculated by dividing the number of teeth on the driven gear by the number of teeth on the driving gear. This ratio represents the relationship between the rotational speeds of the gears and provides insights into the mechanical advantage and speed transformation in the gear assembly.

miter gear

What are the advantages of using miter gears in machinery?

Miter gears offer several advantages when used in machinery. Here’s a detailed explanation of their advantages:

1. Right Angle Power Transmission:

One of the primary advantages of miter gears is their ability to transmit power between intersecting shafts at a right angle. This allows for efficient power transfer in machinery where the input and output shafts need to be oriented perpendicularly. Miter gears eliminate the need for additional components or complex mechanisms to achieve this right angle power transmission.

2. Compact Design:

Miter gears have a compact design due to their conical shape and intersecting shaft arrangement. They occupy less space compared to other types of gears used for parallel or non-intersecting shafts. This compactness is particularly beneficial in machinery where space constraints are a concern, allowing for more efficient utilization of available space.

3. Directional Change of Rotation:

Miter gears enable the change in the direction of rotational motion. By meshing two miter gears, the input rotational motion can be redirected at a 90-degree angle. This flexibility in changing the direction of rotation is advantageous in machinery that requires precise control over the direction of movement or where space limitations restrict the orientation of the equipment.

4. Speed Adjustment:

Miter gears can be used to achieve speed reduction or increase by varying the number of teeth on the gears or combining them with other gears. This allows for adjusting the rotational speed to match the desired output speed. The ability to change the speed with miter gears provides flexibility in adapting the machinery to specific operational requirements.

5. Smooth Operation:

When designed and manufactured with precision, miter gears can provide smooth and efficient operation. Proper tooth profile and tooth contact ensure minimal noise and vibration during gear engagement, resulting in quieter and more reliable machinery performance.

6. Versatility:

Miter gears are versatile and find applications in a wide range of machinery across various industries. They can be employed in different types of equipment, including mechanical clocks, robotics, printing machinery, automotive differentials, camera lenses, and more. The versatility of miter gears makes them a valuable choice for different machinery requirements.

7. High Torque Transmission:

Miter gears are capable of transmitting high torque due to their robust construction and tooth engagement characteristics. This makes them suitable for machinery that requires the transmission of substantial power or torque, ensuring reliable operation even under demanding conditions.

In summary, the advantages of using miter gears in machinery include right angle power transmission, compact design, directional change of rotation, speed adjustment, smooth operation, versatility, and high torque transmission. These advantages make miter gears a preferred choice in various machinery applications, offering efficiency, flexibility, and reliable performance.

China Custom T Series High Speed Right Angle Small Bevel Gear Reducer supplier China Custom T Series High Speed Right Angle Small Bevel Gear Reducer supplier
editor by CX 2023-10-11

Tags:

miter gear

As one of leading miter gear manufacturers, suppliers and exporters of mechanical products, We offer miter gear and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of miter gear

Recent Posts